

Т

Simulation of Buildings in the Environment

Some Particular Topics

David Glynn, CHAM

Topics

- Wind (overview)
- Pedestrian Wind Comfort
 - Wind averaging
 - Lawson criteria
- Rain
- Greenery Evapotranspirative Cooling
- These features are available in FLAIR
- CHAM

CHAM

Wind Overview

Wind modelling

Wind object sets up simulation for given set of wind conditions

CHAM

Use weather data file	No				
External density is:	Domain flu	uid			
External pressure	101325.0	Pa			
Coefficient	1000.000	Linear			
Wind speed	5.000000	m/s			
Wind direction	South-West	225.0000	•		
Wind reference height	10.00000	m			
Angle between North and	0.000000	o			
Profile Type	Logarithmi	с			
Vertical direction	Z				
Effective roughness heigh	nt				
Low crops, occasi	onal large ob	ostacles		0.100000	m
Displacement height	0.000000	m			
Include open sky	Yes				
Include ground plane	Yes				
Acts as GENTRA exit	Yes				
Store Wind Amplification	Factor (WAMP)		No	
Store Wind Amplification	Factor (WAF)			No	
Store Wind Attenuation Co	oefficient (W	AT)		No	
	ancel	ОК			

Typical wind case

CHAM

Pedestrian Wind Comfort

Wind comfort - introduction

- Suppose we ask questions like:
 - In my new office development, are the pedestrian walkways going to be excessively windy?
 - Where should I site my new outdoor café so that it will be most sheltered?
- Questions like this require information on wind conditions throughout the year
- CFD runs will be required for many wind directions
- Statistical averaging is required

Wind comfort - introduction

- How to handle the statistical averaging in PHOENICS?
- This is the purpose of the new "wind comfort" facility
- In "Models"/"Comfort Indices" we find "Show pedestrian wind comfort"

Show pedestrian wind comfort	ON
Wind data format	PROBABILITY
Wind data file	NOTSET
Comfort index type	PROBABILITY
Threshold velocity	6.000000 m/s
Store average velocity over all sectors	OFF

Comfort index type:

Probability of exceeding Dutch NEN8100

Lawson Criteria

CHAM

Т

Wind statistical data

- The wind statistical data is provided in a file of this form
- Rows are wind speeds, columns are wind directions
- One run for each direction wind speed derived from this data

SiteName	01.01.0	2 - 31.1	2.02									
65.1	59.9	50.0										
12	1.00	0.00										
	3.55	4.97	3.74	4.04	6.70	14.74	17.77	12.67	9.32	9.31	7.38	5.81
1.00	31.99	22.01	32.63	15.43	16.80	5.38	7.11	7.28	11.49	9.68	18.86	21.01
2.00	101.37	67.74	56.22	51.83	27.75	19.99	24.21	26.89	40.43	33.86	59.75	76.07
3.00	180.79	109.88	81.04	66.11	37.48	42.89	41.40	49.91	59.91	43.84	91.14	140.56
4.00	180.49	134.40	99.31	76.69	41.31	57.08	52.69	59.60	58.07	78.50	94.18	140.38
5.00	142.89	121.50	106.15	94.15	40.51	62.52	58.46	73.26	69.99	65.30	102.57	121.82
6.00	113.11	85.80	130.41	105.25	43.86	65.20	67.17	72.58	70.67	81.03	129.91	99.96
7.00	64.67	94.62	117.28	88.59	57.73	59.62	79.85	81.60	86.37	92.73	104.88	78.46
8.00	57.76	85.80	92.17	90.18	63.31	73.82	91.32	87.67	85.68	95.94	79.86	54.02
9.00	27.67	79.13	82.75	77.49	64.43	69.47	88.80	95.68	96.33	96.75	77.11	40.61
10.00	20.46	72.25	63.92	69.55	69.69	80.05	90.00	84.89	84.07	83.21	67.13	35.10
11.00	6.02	54.83	44.23	61.62	77.83	86.57	87.90	71.49	72.51	51.87	43.40	43.00
12.00	12.63	32.47	25.40	51.30	77.51	82.15	72.04	59.18	59.91	49.92	39.93	31.97
13.00	14.14	26.02	23.40	45.49	73.20	73.17	61.22	57.24	49.25	40.40	23.73	31.24
14.00	16.54	10.54	18.26	54.21	80.54	56.79	46.38	50.50	51.77	37.30	19.10	22.97
15.00	9.02	0.86	5.71	23.01	73.52	42.74	38.21	35.41	35.62	33.51	17.36	23.34
16.00	4.21	0.86	5.71	15.07	53.75	38.03	26.68	28.41	25.66	32.02	12.15	14.33
17.00	11.43	0.86	5.71	11.11	44.18	23.18	18.93	21.67	17.64	21.58	12.59	10.84
18.00	3.61	0.43	6.28	1.59	27.43	19.70	17.30	14.67	13.40	19.74	4.63	8.82
19.00	1.20	0.00	0.57	0.79	16.75	13.76	11,42	8.09	5.96	12.39	1.74	4.04
20.00	0.00	0.00	2.28	0.53	5.42	9.42	6.25	4.55	2.52	8.26	0.00	1.10
21.00	0.00	0.00	0.57	0.00	3.83	8.77	4.03	4.05	1.60	5.28	0.00	0.37
22.00	0.00	0.00	0.00	0.00	1.91	4.20	1.44	2.53	1.15	3.79	0.00	0.00
23.00	0.00	0.00	0.00	0.00	0.64	3.11	2.28	0.84	0.00	2.18	0.00	0.00
24.00	0.00	0.00	0.00	0.00	0.32	1.96	1.80	0.67	0.00	0.69	0.00	0.00
25.00	0.00	0.00	0.00	0.00	0.00	0.29	1.86	0.51	0.00	0.00	0.00	0.00
26.00	0.00	0.00	0.00	0.00	0.32	0.14	0.90	0.51	0.00	0.23	0.00	0.00
27.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.34	0.00	0.00	0.00	0.00
28.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
29.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Wind statistical data

- Wind data can also be input in "Weibull" format.
- A good source of wind data is the "Global Wind Atlas" - https://www.globalwindatlas.info

globalwindatlas.info

Global Wind Atlas

The Global Wind Atlas is a free, web-based application developed to help policymakers, planners, and investors identify high-wind areas for wind power generation virtually anywhere in the world, and then perform preliminary calculations. (297 kB) ▼

Wind averaging

- (Absolute Velocity x Probability) for each run is written to phida file in variable VAV
- Utility "PHISUM" adds the VAVs for each run and outputs a new phida containing the average velocities at each cell in variable VAV

CHAM

 \geq

1

Т

"Probability of exceeding"

- The probability PRO of the wind velocity exceeding a given threshold can be plotted.
- Example wind around a mansion this is a typical velocity plot for a given wind direction

L

Т

"Probability of exceeding"

- We do such runs for <u>all</u> directions (usually 8 or 16)
- Then use PHISUM to sum velocity x probability
- Use this to determine the probability of the average velocity exceeding a given threshold

"Probability of exceeding"

- Here is the probability of exceeding the threshold
- You would not site an outdoor cafe at the corners

Lawson Criteria

- The Lawson Comfort Criteria specify a range of pedestrian activities for each activity a wind speed and maximum frequency of exceedance is defined
- If the wind speed exceeds the threshold for the activity, the conditions are deemed unacceptable
- The default criteria are:

Activity	Band	Probability	Threshold Wind Speed
Roads and Car Parks	A -> 1	6%	10.95 m/s
Business walking	B ->2	2%	10.95 m/s
Pedestrian walk-through	C -> 3	4%	8.25 m/s
Pedestrian standing	D -> 4	6%	5.6 m/s
Sitting	E -> 5	1%	5.6 m/s

 Again Lawson requires runs for all (usually 8 or 16) wind directions

CHAM

A V

T

Lawson Criteria

- The criteria can be modified by the user
- For example, for City of London guidelines:

Comfort Category	Threshold *	Description
Sitting	0-4 m/s	Light breezes desired for outdoor restaurants and seating areas where one can read a paper or sit for long periods.
Standing	4-6 m/s	Gentle breezes acceptable for main building entrances, pick- up/drop-off points and bus stops.
Strolling	6-8 m/s	Breezes that would be appropriate for window shopping and strolling along a city/town centre street, plaza or park.
Business Walking	8-10 m/s	High speeds that can be tolerated if one's only objective is to walk, run or cycle without lingering.
Uncomfortable	>10 m/s	Winds of this magnitude are considered a nuisance for most activities, and wind mitigation is required.

Safety Category	Threshold **	Description
Unsafe	>15 m/s	Winds above this threshold will pose safety risks, particularly for more vulnerable pedestrians (elderly, cyclists, etc.).
(*) Comfort throshold	is set for the win	d speed that is exceeded 5% of the time from all wind

(*) Comfort threshold is set for the wind speed that is exceeded 5% of the time from all wind directions.

(**) Safety threshold is set for the wind speed exceeded once a year (0.022% of the time) from any wind direction.

Lawson Criteria

- Plot of Lawson regions for mansion case
- "Sitting" would not be comfortable at the corners!
- Note plots benefit from a restricted colour palette

CHAM

Rain Modelling

L

Т

Why Model Rain?

- Why the interest in rain modelling?
- The Building and Construction Authority in Singapore issue a "Green Mark" code for nonresidential buildings
- They encourage "Wind Driven Rain" simulation "to identify and reduce the severity of rain penetration into functional spaces of the development"

X V

Т

RAIN feature of **FLAIR**

- The RAIN feature of FLAIR uses GENTRA, the Lagrangian particle-tracking module of PHOENICS, to track the paths of individual raindrops
- Helpful to think of rain <u>tracks</u> each track carries a mass flux of water (kg/s)
- The "Rain" object starts the tracks on a rectangular array of points on a horizontal plane
- The total rain flow rate through the Rain object (mm/hr) is divided among the tracks
- The "RainGauge" object identifies which rain tracks impinge on the object, and notes the mass flux which these carry
- The rain drops do NOT affect the wind flow

AV

Т

RAIN feature of **FLAIR**

- From each start location, tracks for up to 5 droplet diameters can be handled
- The drag coefficient Cd for the drops is a specified function of the Reynolds number
- At the start point of each track, the vertical drop velocity is set to the terminal velocity for drops of the relevant size
- Recommended to first run with wind case parallel without rain
- Then restart serial with rain, with relaxation 1.e-10 to "freeze" velocities

HAN

Important Considerations (1)

- It is very important to give serious thought to the placement and size of the Rain object(s)
- Too near the tracks need some distance to minimise the effect of uncertainty re the initial horizontal velocity
- Too far away the tracks may miss the target!
- Too big you may be wasting tracks, leading to excessive computation time
- You will not be able to afford to have tracks starting from the whole sky!

1

Important Considerations (2)

- The precision with which you want to predict the extent of rain penetration will govern the spacing of the ports on the Rain object(s)
- Example from the Singapore BCA Guidelines

		Industrial Building	Others	WDR Points
1.	Very good (no noticeable penetration of WDR)	Depth of rain penetration $\leq 0.20 \text{ m}$	Depth of rain penetration $\leq 0.10 \text{ m}$	1.0 pt
2.	Good (some but acceptable degree of penetration of WDR)	Depth of rain penetration $\leq 0.40 \text{ m}$	Depth of rain penetration $\leq 0.20 \text{ m}$	0.9 pt
3.	Moderate (substantial penetration of WDR, barely acceptable)	Depth of rain penetration ≤ 0.75 m	Depth of rain penetration $\leq 0.30 \text{ m}$	0.8 pt

Rain - Example

- Example wind flow around a building
- Rain object with 20x20 ports, placed so that tracks go towards building
- RainGauge objects (pink) on wall and roof of building

CHAM

Track Display (1)

• All the rain tracks from the Rain object

Track Display (2)

- The rain tracks that impinge on the roof RainGauge
- Green ball at end of each track, red ball at start

N

Т

Track Display (3)

- IMPORTANT NOTE !
- The red and green balls have finite width in the plots, to make them visible. The tracks actually have zero thickness, and start and end at points.

 \geq

Т

Detailed Track Information

 Click "Show rain data" on RainGauge attributes to show mass flows

Raingauge Attributes - RAIN5	8 23
Track history file name Show rain data	GHIS Load Show
Plot tracks	Current
Cancel	ок

Total	number of	tracks passing th	rough RAIN5	is 115	*
Frack	Source	Size (mm)	Mass (kg/s)	Time(s)	
-1	RAIN3	0.0000E+00	2.3148E-03	2.4941E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5087E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5307E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5691E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.6028E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5245E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5391E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5635E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.6048E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.6350E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5046E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5153E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5291E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5610E+01	
-1	RAIN3	0.0000E+00	2.3148E-03	2.5643E+01	Ŧ

-		A A A A A A A A A A A A A A A A A A A				6 X X X			
lesu	ults								23
_									
	-1	RAIN	3	0.0000E+	00	2.3148E-03	32.	4481E+01	*
	-1	RAIN	3	0.0000E+	00	2.3148E-03	32.	4343E+01	
	-1	RAIN	3	0.0000E+	00	2.3148E-03	32.	4240E+01	
	-1	RAIN	3	0.0000E+	00	2.3148E-03	32.	4150E+01	
	-1	RAINS	3	0.0000E+	00	2.3148E-03	31.	3449E+01	
	-1	RAIN	3	0.0000E+	00	2.3148E-03	31.	3442E+01	
	-1	RAIN	3	0.0000E+	00	2.3148E-03	31.	3455E+01	
	-1	RAIN	3	0.0000E+	00	2.3148E-03	31.	3443E+01	
	-1	RAIN	3	0.0000E+	00	2.3148E-03	31.	3428E+01	
	Total	mass	passing	through:	2.	6620E-01 kg	g/s		
	Source	е	Number	Size (m	m)	Mass (ke	g/s)		
I	RAIN3		0	1.5242E+	00	0.000E-	+00		
I	RAIN3		0	3.0000E+	00	0.000E-	+00		-
F	RAIN3		0	7.5000E-	01	0.0000E-	+00		
									Ŧ
						Cance	el	ОК	

 \geq

Т

Rain – Other Controls

- Other buttons on the RainGauge attributes:
- "Load" loads the Gentra tracks
- "Plot tracks" toggles between:
 - "Hide all" no tracks
 - "Show all" all tracks visible
 - "Current" only display the tracks impinging on the RainGauge

AIV

Т

Rain Penetration Example

- Example Rain penetration
- Building 30 x 30 x 10m
- Central full-height atrium with 5m deep offices either side
- Glazed screens with central doorways 6m wide x 3m high at both ends

Rain Penetration Example

- Building at the centre of domain
- Domain size 150 x 150 x 50 m
- Wind 5 m/s from SW

L

Wind Solution

- Contours at door mid-height •
- Note wind flows parallel to building side and then • angles in through doorway

L

т

LAIR

Wind Streamlines

- Streamlines entering doorway at half height
- Note the abrupt turn inwards at the doorway
- And how the streamlines rise inside the building

Placing of Rain Object

- 5 x 36 m, with 40 x 72 ports, 6m above ground
- Located above and upwind of door, touching glazing

Behaviour of Rain Tracks

- CHAM
- Here we see how the rain tracks initially fall vertically before being caught by the wind
- This is why the Rain object must be a significant height above the doorway
 - The Rain object position and size were arrived at from a process of experimentation

A V

Т

Other Model Features

- Rain drop diameter 1.5 mm
- The RainGauge object covers the complete floor area within the building, here seen in plan view

Objective

- The <u>objective</u> of this study is to determine the degree of rain penetration into the building
- In other words how much of the floor will get wet?

Rain penetration for 1.5mm drops

- The grey rectangle is the open doorway
- Green balls indicate where rain tracks hit the floor
- Grey "stripes" 20cm wide so penetration about 1.8m

N N

Т

Rain penetration for 1.5mm drops

- The same in plan view
- Red balls show start points of tracks ending in green
- Red balls helpful for planning size of Rain object

Rain penetration for 1.2mm drops

- Size of drops reduced to 1.2 mm
- Note greater penetration

Rain penetration for 1.2mm drops

- The same in plan view
- Where do the tracks "in the middle" go?

Effect of door canopy

 Another view of the 1.5mm drops entering the doorway

I

Т

Effect of door canopy

- 1m deep canopy, same width as the doorway
- The rain ingress is changed but not really reduced
- Rain tracks sneak in around the side of the canopy

Effect of door canopy

- Larger canopy 2m deep, 1m wider each side
- Now the rain ingress is significantly reduced!

CHAN

Greenery Evapotranspirative Cooling

1

Т

Greenery Cooling

- This is a topic of current research.
- Here we will discuss a few references one by Blocken et al, and two by Ennos.
- Anyone seriously interested should do a proper literature search.

AV

Т

"Arnhem" paper

- "CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands" by Gromke, Blocken et al.
- <u>http://www.urbanphysics.net/2014_BAE_CG_BB_W</u>
 <u>J_BM_TvH_HT_Arnhem_Preprint.pdf</u>
- This focusses on the "volumetric cooling power P_c", i.e. the heat loss by transpiration of water from the foliage (W/m³).
- This heat loss is specified over the region of the tree canopy.

AVI

Т

"Arnhem" paper

- The paper estimates a value of P_c, based on an Israeli study which involved measuring the cooling effect of trees in a courtyard.
- Based on this study, a value of P_c = 250 W/m³ is estimated (per unit leaf area density).
- This value is supported by the work of Rahman et al [ref 86], which reports values of 284 and 335 W/m³ for deciduous trees in Manchester UK during summer.
- The cooling power can be entered in the Foliage object attributes.
- Note the similarity of the above values BUT Manchester is very different from the Israeli Negev !

L

Т

Ennos 2011

- "Quantifying the cooling benefits of urban trees" by R Ennos, "Trees People and the Built Environment", Urban Trees Research Conference 13-14 April 2011, pp113-118.
- https://www.researchgate.net/publication/269632119
- Different approach.
- Postulates that "rate of transpiration is proportional to the photosynthetic rate and hence to growth rate".
- Cooling rate therefore proportional to biomass growth, which can be measured.

NA

Т

Ennos 2011

type	typical	peak rate / faster growing
short-rotation coppice	96 to 154	380 to 610
deciduous forest	19 to 31	75 to 125
urban trees - average stand	18 to 29	45 to 73

Table 1: Cooling rate of typical trees, W/m2 (Ennos)

- Note this is W/m2 of ground area beneath canopy
- The data here is very scanty and very imprecise
- Author emphasises: "These results, though promising and plausible, are only estimates"

Ennos 2014

- CHAM
- "How Useful are Urban Trees? The Lessons of the Manchester Research Project", "Trees People and the Built Environment II", Urban Trees Research Conference 2-3 April 2014, pp62-70.
- https://www.researchgate.net/publication/274958579

Ennos 2014

- Evapotranspirational cooling (energy loss per tree) calculated for five different species of street trees.
- Note these data are for individual (small) trees.

Т

How to model in PHOENICS

- A negative heat source can be defined in the Foliage object.
- Alternatively a Heat_Source object can be used.
- For the amount of the heat source, study the references above and perhaps search the literature.
- For individual trees, the Ennos 2014 data looks good. But bear in mind these are small street trees, not large oaks!
- For green walls or green roofs, again a literature search might reveal data. Alternatively, apply the data for trees – with great care and thought!

CHAM

THE END